23 research outputs found

    Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers

    Get PDF
    Sequencing-based breast cancer diagnostics have the potential to replace routine biomarkers and provide molecular characterization that enable personalized precision medicine. Here we investigate the concordance between sequencing-based and routine diagnostic biomarkers and to what extent tumor sequencing contributes clinically actionable information. We applied DNA- and RNA-sequencing to characterize tumors from 307 breast cancer patients with replication in up to 739 patients. We developed models to predict status of routine biomarkers (ER, HER2,Ki-67, histological grade) from sequencing data. Non-routine biomarkers, including mutations in BRCA1, BRCA2 and ERBB2(HER2), and additional clinically actionable somatic alterations were also investigated. Concordance with routine diagnostic biomarkers was high for ER status (AUC = 0.95;AUC(replication) = 0.97) and HER2 status (AUC = 0.97;AUC(replication) = 0.92). The transcriptomic grade model enabled classification of histological grade 1 and histological grade 3 tumors with high accuracy (AUC = 0.98;AUC(replication) = 0.94). Clinically actionable mutations in BRCA1, BRCA2 and ERBB2(HER2) were detected in 5.5% of patients, while 53% had genomic alterations matching ongoing or concluded breast cancer studies. Sequencing-based molecular profiling can be applied as an alternative to histopathology to determine ER and HER2 status, in addition to providing improved tumor grading and clinically actionable mutations and molecular subtypes. Our results suggest that sequencing-based breast cancer diagnostics in a near future can replace routine biomarkersNonePublishe

    Multi-center real-world comparison of the fully automated Idylla (TM) microsatellite instability assay with routine molecular methods and immunohistochemistry on formalin-fixed paraffin-embedded tissue of colorectal cancer

    Get PDF
    Microsatellite instability (MSI) is present in 15-20% of primary colorectal cancers. MSI status is assessed to detect Lynch syndrome, guide adjuvant chemotherapy, determine prognosis, and use as a companion test for checkpoint blockade inhibitors. Traditionally, MSI status is determined by immunohistochemistry or molecular methods. The Idylla (TM) MSI Assay is a fully automated molecular method (including automated result interpretation), using seven novel MSI biomarkers (ACVR2A, BTBD7, DIDO1, MRE11, RYR3, SEC31A, SULF2) and not requiring matched normal tissue. In this real-world global study, 44 clinical centers performed Idylla (TM) testing on a total of 1301 archived colorectal cancer formalin-fixed, paraffin-embedded (FFPE) tissue sections and compared Idylla (TM) results against available results from routine diagnostic testing in those sites. MSI mutations detected with the Idylla (TM) MSI Assay were equally distributed over the seven biomarkers, and 84.48% of the MSI-high samples had >= 5 mutated biomarkers, while 98.25% of the microsatellite-stable samples had zero mutated biomarkers. The concordance level between the Idylla (TM) MSI Assay and immunohistochemistry was 96.39% (988/1025); 17/37 discordant samples were found to be concordant when a third method was used. Compared with routine molecular methods, the concordance level was 98.01% (789/805); third-method analysis found concordance for 8/16 discordant samples. The failure rate of the Idylla (TM) MSI Assay (0.23%; 3/1301) was lower than that of referenced immunohistochemistry (4.37%; 47/1075) or molecular assays (0.86%; 7/812). In conclusion, lower failure rates and high concordance levels were found between the Idylla (TM) MSI Assay and routine tests.Peer reviewe

    The myofibroblast matrix: implications for tissue repair and fibrosis

    Full text link
    Myofibroblasts, and the extracellular matrix ( ECM ) in which they reside, are critical components of wound healing and fibrosis. The ECM , traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an ‘exuberant’ wound‐healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re‐emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re‐establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound‐healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94657/1/path4104.pd

    FCA Tools Bundle -a Tool that Enables Dyadic and Triadic Conceptual Navigation

    No full text
    Abstract. Formal Concept Analysis is a prominent field of applied mathematics handling collections of knowledge -formal concepts -which are derived from some basic data types, called formal contexts by using concept forming operators. One of the strengths of FCA is the elegant, intuitive and powerful graphical representation of landscapes of knowledge as concept lattices. Nevertheless, in case of triadic FCA (3FCA) for more than 20 years there was no automatic tool for graphical representation of triconcept sets. Moreover, the triangular representation of trilattices, used so far in 3FCA has several disadvantages. Besides the lack of clarity in representation, one major disadvantage is that not every trilattice has a triangular diagram representation. In this paper we focus on the problem of locally navigating in triconcept sets and propose a tool which implements this navigation paradigm. To the best of our knowledge this is the first tool which makes navigation in larger triconcepts sets possible, by flipping through a certain collection of concept lattices

    The third pathway of colorectal carcinogenesis

    No full text
    The majority of the colorectal carcinomas (CRC) arise in a vast mucosal area built with columnar cells and mucus-producing goblet cells. These carcinomas evolve via the conventional (tubular/villous) adenoma-carcinoma pathway, or the serrated adenoma-carcinoma pathway. Much less frequently CRC arise in the gut-associated lymphoid tissue (GALT) mucosal domain via the third pathway of colorectal carcinogenesis

    PD-L1 expression and deficient mismatch repair in ductal adenocarcinoma of the prostate

    No full text
    This study aimed to investigate the expression of programmed death receptor ligand 1 (PD-L1) and deficient mismatch repair (dMMR) in ductal adenocarcinoma of the prostate. A tissue microarray of 32 ductal and 42 grade-matched acinar adenocarcinomas was used. Slides were stained for PD-L1, PD-L2, MMR proteins, CD4 and CD8. PD-L1 expression in tumor cells was only seen in 3% (1/34) of ductal and 5% (2/42) of acinar adenocarcinomas (p\ua0=\ua01.0), while PD-L1 expression in tumor-infiltrating immune cells was seen in 29% (10/34) of ductal and 14% (6/42) of acinar adenocarcinomas (p\ua0=\ua00.16). dMMR, as defined by loss of one or more of the MMR proteins, was identified in 5% (4/73) of cases, including 1 ductal and 3 acinar adenocarcinomas. There was a suggested association between infiltration of CD8+ lymphocytes and ductal subtype (p\ua0=\ua00.04) but not between CD4+ lymphocytes and tumor type (p\ua0=\ua00.28). The study shows that both dMMR and PD-L1 expression is uncommon in tumor cells of both ductal and acinar adenocarcinoma of the prostate, while PD-L1 expression in tumor-infiltrating immune cells is a more common finding

    Drug sensitivity patterns of HHV8 carrying body cavity lymphoma cell lines

    No full text
    Abstract Background Primary effusion lymphoma (PEL) is a rare KSHV/HHV8-associated high-grade non-Hodgkin's lymphoma (NHL) of B-cell origin, characterized by serous effusions in body cavities. Most patients are HIV-infected men with severe immunosuppression and other HHV8-associated diseases such as Kaposi's sarcoma (KS). The prognosis for those infected is poor, with a median survival of less than 6 months in most cohorts. Sustained complete remission is rare. High-dose chemotherapy regimens are used to improve remission rate and survival. The aim of the present study was to compare the drug sensitivity pattern of the available primary effusion (body cavity based) lymphoma-derived cell lines in order to find additional, potentially effective drugs that are not included in current chemotherapy treatment protocols. Methods We have analyzed 11 cell lines against 27 frequently used cytostatic drugs in short term (3 days) survival assays using automated high throughput confocal microscopy. Results All cell lines showed a distinct, individual drug sensitivity pattern. Considering the in vitro used and clinically achieved drug concentration, Vinorelbine, Paclitaxel, Epirubicin and Daunorubicin were the most effective drugs. Conclusions We suggest that inclusion of the above drugs into PEL chemotherapy protocols may be justified. The heterogeneity in the drug response pattern however indicated that assay-guided individualized therapy might be required to optimize therapeutic response.</p
    corecore